
IEMS5730
Spring 2023

Stream Processing
Prof. Wing C. Lau

Department of Information Engineering
wclau@ie.cuhk.edu.hk

Spark Streaming 2

Acknowledgements
n These slides are adapted from the following sources:

n Matei Zaharia, “Spark 2.0,” Spark Summit East Keynote, Feb 2016.
n Reynold Xin, “The Future of Real-Time in Spark,” Spark Summit East Keynote, Feb 2016.
n Michael Armburst, “Structuring Spark: SQL, DataFrames, DataSets, and Streaming,” Spark Summit East Keynote, Feb

2016.
n Ankur Dave, “GraphFrames: Graph Queries in Spark SQL,” Spark Summit East, Feb 2016.
n Michael Armburst, “Spark DataFrames: Simple and Fast Analytics on Structured Data,” Spark Summit Amsterdam, Oct

2015.
n Michael Armburst et al, “Spark SQL: Relational Data Processing in Spark,” SIGMOD 2015.
n Michael Armburst, “Spark SQL Deep Dive,” Melbourne Spark Meetup, June 2015.
n Reynold Xin, “Spark,” Stanford CS347 Guest Lecture, May 2015.
n Joseph K. Bradley, “Apache Spark MLlib’s past trajectory and new directions,” Spark Summit Jun 2017.
n Joseph K. Bradley, “Distributed ML in Apache Spark,” NYC Spark MeetUp, June 2016.
n Ankur Dave, “GraphFrames: Graph Queries in Apache Spark SQL,” Spark Summit, June 2016.
n Joseph K. Bradley, “GraphFrames: DataFrame-based graphs for Apache Spark,” NYC Spark MeetUp, April 2016.
n Joseph K. Bradley, “Practical Machine Learning Pipelines with MLlib,” Spark Summit East, March 2015.
n Joseph K. Bradley, “Spark DataFrames and ML Pipelines,” MLconf Seattle, May 2015.
n Ameet Talwalkar, “MLlib: Spark’s Machine Learning Library,” AMPCamps 5, Nov. 2014.
n Shivaram Venkataraman, Zongheng Yang, “SparkR: Enabling Interactive Data Science at Scale,” AMPCamps 5, Nov.

2014.
n Tathagata Das, “Spark Streaming: Large-scale near-real-time stream processing,” O’Reilly Strata Conference, 2013.
n Joseph Gonzalez et al, “GraphX: Graph Analytics on Spark,” AMPCAMP 3, 2013.
n Jules Damji, “Jumpstart on Apache Spark 2.X with Databricks,” Spark Sat. Meetup Workshop, Jul 2017.
n Sameer Agarwal, “What’s new in Apache Spark 2.3,” Spark+AI Summit, June 2018.
n Reynold Xin, Spark+AI Summit Europe, 2018.
n Hyukjin Kwon of Hortonworks, “What’s New in Spark 2.3 and Spark 2.4,” Oct 2018.
n Matel Zaharia, “MLflow: Accelerating the End-to-End ML Lifecycle,” Nov. 2018.
n Jules Damji, “MLflow: Platform for Complete Machine Learning Lifecycle,” PyData, Jan 2019.

n All copyrights belong to the original authors of the materials.

Spark Streaming 3

Major Modules in Spark

Spark Streaming 4

n Many Important Applications must process Large Data
Streams at second-scale latencies
n Site Statistics, Intrusion Detection, Online ML, Fraud Detection

n To build and scale these applications require:
n Integration: with Offline Analytic Stack
n Fault-tolerance: to handle Crashes and Stragglers
n Efficiency: low cost beyond base processing
n Work with distributed collections as you would with local ones

Motivation for Spark Streaming

Spark Streaming 5

n “Low Latency”, High-throughput and Fault Tolerant
n Discretized Stream (DStream): Micro-batches of RDDs

n Operations are similar to RDD
n Lineage for Fault-Tolerance

n Leverage Core Components from Spark
n RDD data model and API
n Data Partitioning and Shuffles
n Task Scheduling
n Monitoring/ Instrumentation
n Scheduling and Resource Allocation

n Support Flume, Kafka, Twitter, Kinesis, etc for Data
Ingestion

n Long-running Spark Applications

Spark Streaming Overview

Spark Streaming 6

Discretized Stream Processing

Run a streaming computation as a series of very
small, deterministic batch jobs

6

Spark

Spark
Streaming

batches of X
seconds

live data stream

processed
results

§ Chop up the live stream into
batches of X seconds

§ Spark treats each batch of
data as RDDs and processes
them using RDD operations

§ Finally, the processed results
of the RDD operations are
returned in batches

Spark Streaming 7

Discretized Stream Processing

Run a streaming computation as a series of very
small, deterministic batch jobs

7

Spark

Spark
Streaming

batches of X
seconds

live data stream

processed
results

§ Batch sizes as low as ½
second, latency ~ 1 second

§ Potential for combining batch
processing and streaming
processing in the same system

Spark Streaming 8

Discretized Stream Processing (Micro-Batching)

Spark Streaming 9

Programming Interface

runningReduce() is merely a concept, actually not implemented by Spark ;
Use updateStateByKey(), mapStateByKey() etc instead ; more details on
arbitrary Stateful operations with Spark Streaming later.

Spark Streaming 10

n Transformations – modify data from one DStream to
another
nStandard RDD operations – map, filter, distinct,
countByValue, reduceByKey, join, …
nStateful, Sliding Window-based Operations

n window, updateStateByKey, countByValueAndWindow
n Window Size & Slide Interval

n Output Operations – send data to external entity
nsaveAsHadoopFiles – saves to HDFS
nforeach – do anything with each batch of results

n Checkpointing
n Register DStream as a SQL table

Spark Streaming API

Spark Streaming 11

Example 1: Get HashTags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter
password>)

DStream: a sequence of distributed datasets (RDDs)
representing a distributed stream of data

batch @ t+1batch @ t batch @ t+2

tweets DStream

stored in memory as an RDD
(immutable, distributed dataset)

Twitter Streaming API

Spark Streaming 12

Example 1: Get HashTags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter
password>)

val hashTags = tweets.flatMap (status => getTags(status))

flatMap flatMap flatMap

…

transformation: modify data in one DStream to create
another DStream new DStream

new RDDs created
for every batch

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags Dstream
[#cat, #dog, …]

Spark Streaming 13

Example 1: Get HashTags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter
password>)

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")
output operation: to push data to external

storage

flatMap flatMap flatMap

save save save

batch @ t+1batch @ t batch @ t+2
tweets DStream

hashTags DStream

every batch
saved to HDFS

Spark Streaming 14

Example 1: Get HashTags from Twitter

Spark Streaming 15

Example 1 in Java vs. Scala

Scala

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

Java

JavaDStream<Status> tweets = ssc.twitterStream(<Twitter username>,
<Twitter password>)

JavaDstream<String> hashTags = tweets.flatMap(new Function<...> { })

hashTags.saveAsHadoopFiles("hdfs://...")

Spark Streaming 16

Spark program vs Spark Streaming program

Spark Streaming program on Twitter stream
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")

Spark program on Twitter log file
val tweets = sc.hadoopFile("hdfs://...")
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFile("hdfs://...")

Spark Streaming 17

Vision - one stack to rule them all
n Explore data

interactively using
Spark Shell / PySpark to
identify problems

n Use same code in Spark
stand-alone programs
to identify problems in
production logs

n Use similar code in
Spark Streaming to
identify problems in
live log streams

$./spark-shell
scala> val file = sc.hadoopFile(“smallLogs”)
...
scala> val filtered = file.filter(_.contains(“ERROR”))
...
scala> val mapped = file.map(...)
...object ProcessProductionData {

def main(args: Array[String]) {
val sc = new SparkContext(...)
val file = sc.hadoopFile(“productionLogs”)
val filtered =

file.filter(_.contains(“ERROR”))
val mapped = file.map(...)
...

}
}

object ProcessLiveStream {
def main(args: Array[String]) {

val sc = new StreamingContext(...)
val stream = sc.kafkaStream(...)
val filtered =

file.filter(_.contains(“ERROR”))
val mapped = file.map(...)
...

}
}

Spark Streaming 18

Example 2: Count the HashTags
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.countByValue()

flatMap

map

countByValue

flatMap

map

countByValue

…

flatMap

map

countByValue

batch @ t+1batch @ t batch @ t+2

hashTags

tweets

tagCounts
[(#cat, 10), (#dog, 25), ...]

Spark Streaming 19

batch 2
@

time 2

Windowed Stream

batch 1
@

time 1

Window Operations

 Original Stream

batch 4
@

time 4

batch 3
@

time 3

batch 5
@

time 5

batch 6
@

time 6

window @ time 3

window @ time 4

window @ time 5

window @ time 6

(window size 3, slide interval 1)

Window-based Operations on DStreams

Spark Streaming 20

Example 3: Count the HashTags over last 1 min

DStream of data

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.window(Minutes(1), Seconds(1)).countByValue()

sliding window
operation window length sliding interval

window length

sliding interval

Spark Streaming 21

Example 3: Count the HashTags over last 1 min

tagCounts

val tagCounts = hashTags.window(Minutes(1), Seconds(1)).countByValue()

hashTags

t-1 t t+1 t+2 t+3

sliding window

countByValue

count over all
the data in the

window

Spark Streaming 22

Example 3: Smart Window-based countByValue

?

val tagCounts = hashtags.countByValueAndWindow(Minutes(10),
Seconds(1))

hashTags

t-1 t t+1 t+2 t+3

+

+
–

countByValue

add the
counts from

the new batch
in the window

subtract the
counts from

batch
before the

window

tagCounts

Spark Streaming 23

Smart window-based reduce

n Technique to incrementally compute count generalizes
to many reduce operations
n Need a function to “inverse reduce” (“subtract” for

counting)

n Could have implemented counting as:
hashTags.reduceByKeyAndWindow(_ + _, _ - _, Minutes(1), …)

23

Spark Streaming 24

Another Example: Word Count with Kafka

Spark Streaming 25

Another Example: Word Count with Kafka

Spark Streaming 26

Another Example: Word Count with Kafka

Spark Streaming 27

Another Example: Word Count with Kafka

Spark Streaming 28

Combine SQL with Streaming

§Interactively query streaming data with SQL and
Dataframes

Spark Streaming 29

Another Example

Spark Streaming 30

Combine Batch and Stream Processing

§Inter-mix RDD and DStream operations
- e.g., Join incoming tweets with a spam HDFS file to filter

out bad tweets

tweets.transform(tweetsRDD => {
tweetsRDD.join(spamHDFSFile).filter(...)

})

•Query streaming data using SQL, e.g.
select * from table_from_streaming_data

Spark Streaming 31

Many Transformations

Spark Streaming 32

Arbitrary Stateful Computations
§Maintain arbitrary state, track sessions and specify

function to generate new state based on previous state
and new data:
- e.g. Maintain per-user mood as state, and update it with his/her

tweets

def updateMood(newTweets, lastMood) => newMood

val moods = tweets.updateStateByKey(tweet => updateMood(_))

tweets

t-1 t t+1 t+2 t+3

moods

Detail usage example of updateStateByKey at:
https://docs.cloud.databricks.com/docs/latest/databricks_guide/07%20Spark%20Streaming/11%20Global%20Ag
gregations%20-%20updateStateByKey.html
for the purpose of Historical Reference only !!

https://docs.cloud.databricks.com/docs/latest/databricks_guide/07%20Spark%20Streaming/11%20Global%20Aggregations%20-%20updateStateByKey.html

Spark Streaming 33

Example of using updateStateByKey()
for Stateful Stream Computations

Spark Streaming 34

Example of using updateStateByKey()
for Stateful Stream Computations (cont’d)

Spark Streaming 35

Example of using updateStateByKey()
for Stateful Stream Computations (cont’d)

Spark Streaming 36

Another Example of Stateful Operation on
Spark-Stream:

Session Tracking

n A series of events à state changing

sessions = events.track(
(key, ev) => 1, // initialize function
(key, st, ev) => // update function
ev == Exit ? null : 1,
"30s") // timeout
counts = sessions.count() // a stream of
ints

Spark Streaming 37

New Developments in
Spark-Streaming with

Arbitrary Stateful Computations

Instead of using updateStateByKey():

•MapWithState() was introduced in Spark 1.6 as the preferred way to realize
stateful operations in Spark Streaming,

•MapGroupsWithState and FlatMapGroupsWithState were introduced in Spark
2.2

See detail usage examples at:
https://databricks.com/blog/2016/02/01/faster-stateful-stream-processing-in-apache-spark-streaming.html

http://asyncified.io/2016/07/31/exploring-stateful-streaming-with-apache-spark/

http://asyncified.io/2017/07/30/exploring-stateful-streaming-with-spark-structured-streaming/

https://databricks.com/blog/2017/10/17/arbitrary-stateful-processing-in-apache-sparks-structured-streaming.html

https://databricks.com/blog/2016/02/01/faster-stateful-stream-processing-in-apache-spark-streaming.html
http://asyncified.io/2016/07/31/exploring-stateful-streaming-with-apache-spark/
http://asyncified.io/2017/07/30/exploring-stateful-streaming-with-spark-structured-streaming/
https://databricks.com/blog/2017/10/17/arbitrary-stateful-processing-in-apache-sparks-structured-streaming.html

Spark Streaming 38

Fault Tolerance
n RDDs remember the

operations that created
them

n Batches of input data are
replicated in memory for
fault-tolerance

n Data lost due to worker
failure, can be recomputed
from replicated input data

n Therefore, all transformed
data is fault-tolerant

n Exactly once semantics
n No double counting

input data
replicated
in memory

flatMap

lost partitions
recomputed on
other workers

tweets
RDD

hashTags
RDD

Spark Streaming 39

Input Sources
n Out of the box support for:

n Kafka, Flume, Akka Actors, Raw TCP sockets, HDFS, etc

n Developers can write additional custom receiver(s)
n Just define what to and when receiver is started and stopped

n Can also generate one’s own sequence of RDDs and push
them in as a “Stream”

Spark Streaming 40

Zero (Input) Data Loss during Streaming

For Non-replayable Sources, i.e. sources that do not support
replay from any position (e.g. Flume, etc):
nSolved using Write Ahead Log (WAL) (since Spark 1.3)

For Replayable Sources, i.e. sources that allow data to be
replayed from any position (e.g. Kafka, Kinesis, etc):
nSolved with more reliable Kafka and Kinesis Integrations
(Spark 1.3-1.5)

Spark Streaming 41

Write Ahead Log (WAL) [since Spark 1.3]

n All received data synchronously written to HDFS and
replayed when necessary after failure

n WAL can be enabled by setting Spark configuration flag:
spark.streaming.receiver.writeAheadLog.enabled to TRUE

n Can give end-to-end at least once guarantee for sources
that can support acks, but do not support replays

Spark Streaming 42

Reliable Kinesis [since Spark 1.5]

n Save record sequence numbers instead of data to WAL
n Replay from Kinesis using sequence numbers
n Higher throughput than using WAL
n Can give at least once guarantee

Spark Streaming 43

Reliable Kafka [Spark 1.3, graduated in 1.5]
n New API: Direct Kafka stream:

n Does not use receivers, does not use ZooKeeper to save offsets
n Offset management (saving, replaying) by Spark Streaming

n Can provide up to 10x higher throughput than earlier
receiver
n https://spark-summit.org/2015/events/towards-benchmarking-

modern-distributed-streaming-systems/

n Can give exactly-once guarantee (excluding o/p to
storage)

n Can run Spark batch jobs directly on Kafka
n # of RDD partitions = # of Kafka partitions, easy to reason about
n https://databricks.com/blog/2015/03/30/improvements-to-

kafka-integration-of-spark-streaming.html

Spark Streaming 44

Innerworkings of a
Discretized Stream (DStream)

A sequence of RDDs representing
a stream of data

What does it take to define a DStream?

Spark Streaming 45

DStream Interface

The DStream interface primarily defines how to
generate an RDD in each batch interval

nList of dependent (parent) DStreams

nSlide Interval, the interval at which it will
compute RDDs

nFunction to compute RDD at a time t

Spark Streaming 46

Example: Mapped DStream
n Dependencies: Single parent DStream

n Slide Interval: Same as the parent DStream

n Compute function for time t: Create new RDD by applying
map function on parent DStream’s RDD of time t

override def compute(time: Time): Option[RDD[U]] = {
parent.getOrCompute(time).map(_.map[U](mapFunc))

}

Gets RDD of time t if already
computed once, or generates it

Map function applied to
generate new RDD

Spark Streaming 47

Example: Windowed DStream

window length

sliding interval

Window operation gather together data over a sliding
window

Dependencies: Single parent DStream

Slide Interval: Window sliding interval

Compute function for time t: Apply union over all the RDDs
of parent DStream between times t and (t – window length)

Parent DStream

window length

sliding interval

Spark Streaming 48

Example: Network Input DStream

Base class of all input DStreams that receive data
from the network
nDependencies: None
nSlide Interval: Batch duration in streaming context
nCompute function for time t: Create a BlockRDD
with all the blocks of data received in the last batch
interval
nAssociated with a Network Receiver object

Spark Streaming 49

Network Receiver

Responsible for receiving data and pushing it into
Spark’s data management layer (Block Manager)

Base class for all receivers - Kafka, Flume, etc.

Simple Interface:
nWhat to do on starting the receiver

n Helper object blockGenerator to push data into Spark
nWhat to do on stopping the receiver

Spark Streaming 50

Example: Socket Receiver

n On start:
Connect to remote TCP server
While socket is connected,

Receiving bytes and deserialize
Deserialize them into Java objects
Add the objects to blockGenerator

n On stop:
Disconnect socket

Spark Streaming 51

Other functions in DStream interface

n parentRememberDuration – defines how long
should
n Window-based DStreams have

parentRememberDuration = window length

n mustCheckpoint – if set to true, the system will
automatically enable periodic checkpointing
n Set to true for stateful DStreams

Spark Streaming 52

Recap: Execution Process of Spark

Spark Streaming 53

Recap: A Spark Application

Spark Streaming 54

DStream Graph

t = ssc.twitterStream(“…”)
.map(…)

t.foreach(…)

t1 = ssc.twitterStream(“…”)
t2 = ssc.twitterStream(“…”)

t = t1.union(t2).map(…)

t.saveAsHadoopFiles(…)
t.map(…).foreach(…)
t.filter(…).foreach(…)

T

M

FE

Twitter Input DStream

Mapped DStream

Foreach DStream

T

U

M

T

M FFE

FE FE

DStream GraphSpark Streaming program

Dummy DStream signifying
an output operation

Spark Streaming 55

DStream Graph à RDD Graphs à Spark jobs
n Every interval, RDD graph is computed from

DStream graph
n For each output operation, a Spark action is created
n For each action, a Spark job is created to compute it

T

U

M

T

M FFE

FE FE

DStream Graph

B

U

M

B

M FA

A A

RDD Graph

Spark actions

Block RDDs with
data received in
last batch interval

3 Spark jobs

Spark Streaming 56

Agenda
n Overview
n DStream Abstraction
n System Model
n Persistence / Caching
n RDD Checkpointing
n Performance Tuning

Spark Streaming 57

Components

n Network Input Tracker – Keeps track of the data received by each network
receiver and maps them to the corresponding input DStreams

n Job Scheduler – Periodically queries the DStream graph to generate Spark
jobs from received data, and hands them to Job Manager for execution

n Job Manager – Maintains a job queue and executes the jobs in Spark

ssc = new StreamingContext

t = ssc.twitterStream(“…”)

t.filter(…).foreach(…)

Your program
DStream graph

Spark Context

Network Input Tracker

Job Manager

Job Scheduler

Spark Client
RDD graph Scheduler

Block manager Shuffle
tracker

Spark Worker
Block

manager
Task

threads

Cluster
Manager

Spark Streaming 58

Execution Model – Receiving Data

Spark Streaming + Spark Driver Spark Workers

StreamingContext.start()

Network
Input

Tracker

Receiver

Network receivers launched as tasks Data recvd

Block
Manager

Blocks replicated

Block
Manager
Master

Notification of received block IDs

Location of block IDs

Block
Manager

Blocks pushed

Spark Streaming 59

Spark Workers

Execution Model – Job Scheduling

Network
Input

Tracker

Job
Scheduler Spark’s

Schedulers

Receiver

Block
Manager

Block
Manager

Jobs executed on
worker nodes

DStream
Graph

Job
Manager

Jo
b

Q
ue

ue

Spark Streaming + Spark Driver

Jobs

Block IDsRDDs

Spark Streaming 60

Job Scheduling

n Each output operation used generates a job
n More jobs à more time taken to process batches à

higher batch duration

n Job Manager decides how many concurrent
Spark jobs to run
n Default is 1, can be set using Java property

spark.streaming.concurrentJobs

n If you have multiple output operations, you can try
increasing this property to reduce batch processing
times and so reduce batch duration

Spark Streaming 61

Agenda
n Overview
n DStream Abstraction
n System Model
n Persistence / Caching
n RDD Checkpointing
n Performance Tuning

Spark Streaming 62

DStream Persistence

n If a DStream is set to persist at a storage level,
then all RDDs generated by it set to the same
storage level

n When to persist?
n If there are multiple transformations / actions on a

DStream
n If RDDs in a DStream is going to be used multiple

times

n Window-based DStreams are automatically
persisted in memory

Spark Streaming 63

DStream Persistence

n Default storage level of DStreams is StorageLevel.MEMORY_ONLY_SER
(i.e. in memory as serialized bytes)
n Except for input DStreams which have

StorageLevel.MEMORY_AND_DISK_SER_2

n Note the difference from RDD’s default level (no
serialization)

n Serialization reduces random pauses due to GC providing
more consistent job processing times

Spark Streaming 64

Agenda
n Overview
n DStream Abstraction
n System Model
n Persistence / Caching
n RDD Checkpointing
n Performance Tuning

Spark Streaming 65

What is RDD checkpointing?

Saving RDD to HDFS to prevent RDD graph from
growing too large
nDone internally in Spark transparent to the user program
nDone lazily, saved to HDFS the first time it is computed

red_rdd.checkpoint()

HDFS file

Contents of red_rdd saved
to a HDFS file transparent to

all child RDDs

Spark Streaming 66

Why is RDD checkpointing necessary?
Stateful DStream operators can have infinite
lineages

Large lineages lead to …
nLarge closure of the RDD object à large task sizes à high task
launch times
nHigh recovery times under failure

data
t-1 t t+1 t+2 t+3

states

Spark Streaming 67

Why is RDD checkpointing necessary?

Stateful DStream operators can have infinite
lineages

Periodic RDD checkpointing solves this

Useful for iterative Spark programs as well

data
t-1 t t+1 t+2 t+3

states

HDF
S

HDF
S

Spark Streaming 68

RDD Checkpointing

n Periodicity of checkpoint determines a tradeoff
n Checkpoint too frequent: HDFS writing will slow things

down
n Checkpoint too infrequent: Task launch times may

increase
n Default setting checkpoints at most once in 10

seconds
n Try to checkpoint once in about 10 batches

Spark Streaming 69

Agenda
n Overview
n DStream Abstraction
n System Model
n Persistence / Caching
n RDD Checkpointing
n Performance Tuning

Spark Streaming 70

Performance Tuning

Step 1
Achieve a stable configuration that can sustain the

streaming workload

Step 2
Optimize for lower latency

Spark Streaming 71

Step 1: Achieving Stable Configuration
How to identify whether a configuration is
stable?
nLook for the following messages in the log
Total delay: 0.01500 s for job 12 of time 1371512674000 …

nIf the total delay is continuously increasing, then
unstable as the system is unable to process data
as fast as its receiving!

nIf the total delay stays roughly constant and
around 2x the configured batch duration, then
stable

Spark Streaming 72

Step 1: Achieving Stable Configuration
How to figure out a good stable configuration?

nStart with a low data rate, small number of nodes,
reasonably large batch duration (5 – 10 seconds)

nIncrease the data rate, number of nodes, etc.

nFind the bottleneck in the job processing
n Jobs are divided into stages
n Find which stage is taking the most amount of time

Spark Streaming 73

Step 1: Achieving Stable Configuration
How to figure out a good stable configuration?
nIf the first map stage on raw data is taking most
time, then try …

n Enabling delayed scheduling by setting property
spark.locality.wait

n Splitting your data source into multiple sub streams
n Repartitioning the raw data into many partitions as first

step
nIf any of the subsequent stages are taking a lot of
time, try…

n Try increasing the level of parallelism (i.e., increase
number of reducers)

n Add more processors to the system

Spark Streaming 74

Step 2: Optimize for Lower Latency

n Reduce batch size and find a stable
configuration again
n Increase levels of parallelism, etc.

n Optimize serialization overheads
n Consider using Kryo serialization instead of the default

Java serialization for both data and tasks
n For data, set property

spark.serializer=spark.KryoSerializer

n For tasks, set
spark.closure.serializer=spark.KryoSerializer

n Use Spark stand-alone mode rather than Mesos

Spark Streaming 75

Step 2: Optimize for Lower Latency

n Using concurrent mark sweep GC -
XX:+UseConcMarkSweepGC is recommended

n Reduces throughput a little, but also reduces large GC
pauses and may allow lower batch sizes by making
processing time more consistent

n Try disabling serialization in DStream/RDD
persistence levels

n Increases memory consumption and randomness of GC
related pauses, but may reduce latency by further
reducing serialization overheads

n For a full list of guidelines for performance tuning
n Spark Tuning Guide
n Spark Streaming Tuning Guide

http://spark-project.org/docs/latest/tuning.html
http://spark-project.org/docs/latest/streaming-programming-guide.html

Spark Streaming 76

System Stability

n Streaming applications may have to deal with variations
in data rates and processing rates

n For stability, any streaming application must receive data
only as fast as it can process

n Static rate limits on receivers [Spark 1.1]
n But hard to figure out the right rate

Spark Streaming 77

Backpressure [Spark 1.5]

n System automatically and dynamically adapts rate limits
to ensure stability under any processing conditions

n If sinks slow down, then the system automatically pushes
back on the source to slow down receiving

n System uses batch processing times and scheduling
delays experienced to set rate limits

n Well known PID controller theory (used in industrial
control systems) is used to calculate appropriate rate limit
n Contributed by Typesafe

n Enabled by setting Spark configuration flag
n spark.streaming.backpressure.enabled to TRUE

Spark Streaming 78

Backpressure [Spark 1.5]

n System automatically and dynamically adapts rate limits

Spark Streaming 79

Improved State Management

Spark Streaming 80

Improved State Management

Spark Streaming 81

Improved State Management

Spark Streaming 82

Visualizations

Spark Streaming 83

Visualizations

Spark Streaming 84

Visualizations

Spark Streaming 85

Performance
Can process 6 GB/sec (60M records/sec) of data on 100 nodes at
sub-second latency

n Tested with 100 streams of data on 100 EC2 instances with 4 cores each

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100

Cl
us

te
r T

hr
ou

gh
pu

t (
GB

/s
)

Nodes in Cluster

WordCount

1 sec
2 sec

0

1

2

3

4

5

6

7

0 50 100

Cl
us

te
r T

hr
ou

gh
pu

t (
GB

/s
)

Nodes in Cluster

Grep

1 sec
2 sec

Spark Streaming 86

Comparison with Storm and S4

Higher throughput
than Storm
nSpark Streaming: 670k
records/second/node
nStorm: 115k
records/second/node
nApache S4: 7.5k
records/second/node

0

50

100 1000
Th

ro
ug

hp
ut

 p
er

 n
od

e
(M

B/
s)

Record Size (bytes)

WordCount
Spark

Storm

0

40

80

120

100 1000

Th
ro

ug
hp

ut
 p

er
 n

od
e

(M
B/

s)

Record Size (bytes)

Grep Spark

Storm

Spark Streaming 87

Small code base

n 5000 LOC for Scala API (+ 1500 LC for Java
API)
n Most DStream code mirrors the RDD code

Spark Streaming 88

Subsequent Extensions on Spark Streaming
n API and Libraries Support of Streaming DataFrames

n Logical-to-physical plan optimizations
n Tungsten-based binary optimizations
n Support for event-time based windowing
n Support for Out-of-Order Data

n Add Native Infrastructure support for Dynamic Allocation
for Streaming
n Dynamically scale the cluster resources based on processing load
n Need to work with Backpressure to scale up/down while

maintaining stability
n Programmable monitoring by exposing more info via Streaming

Listener
n Performance Enhancement: higher throughput and lower latency,

specially for Stateful Ops, e.g. trackStateByKey

Spark Streaming 89

Structured Streaming in Spark 2.0

Spark Streaming 90

Motivation for Structured Streaming
n Real-time processing is increasingly important
n Most applications need to combine it with Batch &

Interactive queries, e.g.
n Track state using a stream, then run SQL queries
n Train an Machine Learning model offline, then update it

with new, online data

Spark Streaming 91

Challenges of Integrating Streaming into
a Real-world Application Infrastructure

Spark Streaming 92

Complex Programming Models

Spark Streaming 93

Structured Streaming
n High-level Streaming API built on Spark SQL engine

n Run the same queries on DataFrames
n Event-time, windowing, sessions, source and sinks

n Unify Streaming, Interactive and Batch Queries
n Aggregate data in a stream, then serve using JDBC
n Change queries at runtime
n Build and Apply Machine Learning models

Spark Streaming 94

An Example

Spark Streaming 95

Model for Structured Streaming

Spark Streaming 96

Model for Structured Streaming

Spark Streaming 97

Model Details for Structured Streaming

n Input Sources: Append-Only Tables
n Queries: New operators for Windowing, Sessions, etc
n Triggers: based on time (e.g. every 1 sec)
n Output modes: Complete, Deltas, Update-in-Place

Spark Streaming 98

Batch ETL with DataFrames

Spark Streaming 99

Streaming ETL with DataFrames

Spark Streaming 100

Streaming ETL with DataFrames

Spark Streaming 101

Continuous Aggregation

Spark Streaming 102

Joining Streams with Static Data

Spark Streaming 103

Output Modes for Structured Streaming

Spark Streaming 104

Query Management

Spark Streaming 105

Execution for Structured Streaming

Logically:
nDataFrame operations on
static data (i.e. as easy to
understand as batch)

Physically:
nSpark automatically runs the
query in Streaming fashion (i.e.
incrementally and continuously)

Spark Streaming 106

Example: Batch Aggregation

Spark Streaming 107

Example: Continuous Aggregation

Spark Streaming 108

Automatic Incremental Execution

Spark Streaming 109

Incrementalized by Spark

Spark Streaming 110

Inner Workings of Structured Streaming

Spark Streaming 111

Batch Execution on Spark SQL

Spark Streaming 112

Batch Execution on Spark SQL

Spark Streaming 113

Batch Execution on Spark SQL

Spark Streaming 114

Continuous Incremental Execution

Spark Streaming 115

Continuous Incremental Execution

Spark Streaming 116

Continuous Aggregation

Spark Streaming 117

Fault-Tolerance

Spark Streaming 118

Fault-Tolerance

Spark Streaming 119

Fault-Tolerance

Spark Streaming 120

Fault-Tolerance

Spark Streaming 121

Fault-Tolerance

Spark Streaming 122

Fault-Tolerance

Spark Streaming 123

Fault-Tolerance

Spark Streaming 124

Realizing Fault-Tolerance in
Structured Streaming – A Summary

Offset Tracking in WAL
+

State Management
+

Fault-Tolerant Sources and Sinks

= End-to-End Exactly Once Guarantee

Spark Streaming 125

Support of Structured Streaming
from Other Modules of Spark

n Interactive queries should just work
n Spark’s data source API are being updated to

support seamless streaming integration
n Exactly once semantics end-to-end
n Different Output modes (complete, delta, update-in-

place)
n Machine Learning algorithms are being updated

according to this new model

